
Technical Report UW-CSE-00-10-01 1

Comprehensive Synchronization Elimination for Java
Jonathan Aldrich, Emin Gün Sirer, Craig Chambers, and Susan J. Eggers

Department of Computer Science and Engineering

University of Washington

Box 352350, Seattle WA 98195-2350

{jonal,egs,chambers,eggers}@cs.washington.edu

Abstract

In this paper, we describe three novel analyses for eliminating unnecessary synchronization that remove over 70% of

dynamic synchronization operations on the majority of our 15 benchmarks and improve the bottom-line performance of three

by 37-53%. Our analyses attack three frequent forms of unnecessary synchronization: thread-local synchronization, reentrant

synchronization, and enclosed lock synchronization. We motivate the design of our analyses with a study of the kinds of

unnecessary synchronization found in a suite of single- and multithreaded benchmarks of different sizes and drawn from a

variety of domains. We analyze the performance of our optimizations in terms of dynamic operations removed and run-time

speedup. We also show that our analyses may enable the use of simpler synchronization models than the model found in Java,

at little or no additional cost in execution time. The synchronization optimizations we describe enable programmers to design

efficient, reusable and maintainable libraries and systems in Java without cumbersome manual code restructuring.

1.  Introduction

Monitors [LR80] are appealing constructs for synchronization, because they promote reusable code and present a simple

model to the programmer. For these reasons, several programming languages, such as Java [GJS96] and Modula-3 [H92],

directly support them. However, widespread use of monitors can incur significant run-time overhead: reusable code modules

such as classes in the Java standard library often contain monitor-based synchronization for the most general case of

concurrent access, even though particular programs use them in a context that is already protected from concurrency [HN99].

For instance, a synchronized data structure may be accessed by only one thread at run time, or access to a synchronized data

structure may be protected by another monitor in the program. In both cases, unnecessary synchronization increases execution

overhead. As described in section 2, even single-threaded Java programs typically spend 10-50% of their execution time on

synchronization operations.

Synchronization overhead can be reduced by manually restructuring programs [SNR+97], but any performance

improvement gained typically comes at the cost of simplicity, maintainability, reusability, and even program correctness. For

example, synchronized methods can be modified to provide specialized, fast entry points for threads that already hold a
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monitor lock. Such specialized functions make the program more complex, and using them safely may require careful

reasoning to ensure that the protecting lock is acquired on all paths to the function call. In addition, the assumption that a lock

is held at a particular program point may be unintentionally violated by a change in some other part of the program, making

program evolution and maintenance error-prone. A second restructuring technique removes synchronization annotations

where they are not needed for correctness in the current version of the program. Both of these hand optimizations make code

less reusable, because they make assumptions about synchronization that may not be valid when a component is reused in

another setting. These assumptions create an opportunity for subtle concurrency bugs to arise over the course of program

evolution. Overall, complex manual optimizations make programs harder to understand, make program evolution more

difficult, reduce the reusability of components, and can lead to subtle concurrency bugs.

In this paper, we present and evaluate static analyses that reduce synchronization overhead by automatically detecting and

removing unnecessary synchronization. The analyses eliminate synchronization from code that can only be executed by a

single thread, synchronization on locks already protected by an enclosing lock, and synchronization on reentrant locks. The

analyses provide several advantages over manual optimization. First, because our analyses are run automatically during

compilation, the source code is left in its original form, thus avoiding the code complexity and error-prone program evolution

that results from manual restructuring. Second, automatic analyses avoid the significant effort involved in manual

restructuring. Third, our analyses may make other static analyses (e.g., model checking [C98]) more tractable by reducing the

number of concurrency constructs in the program.

Finally, our analyses allow programmers to use a more general language model in which every public method

synchronizes on the receiver’s monitor, rather than ad-hoc synchronization on some methods and not others. Present in several

concurrent object-oriented languages [P96], this model considerably simplifies programmer reasoning about race conditions

by moving locking granularity to the level of the class. The programmer can rely on the compiler to remove extra

synchronization statements in particular contexts, thus ensuring safe multithreaded interaction, while at the same time

avoiding a large run-time performance penalty. In general, this technique could lead to deadlock and reduced concurrency, so

it would be desirable to provide a way to override the default synchronization. However, if a program deadlocks, the problem

is often easily identified by looking at which threads hold which locks; data corruption due to race conditions caused by

manual optimization may be much more difficult to debug, because it is usually detected long after the race condition occurs.
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To evaluate our analyses, we performed two sets of experiments on a set of single- and multithreaded Java applications in

which programmers had manually optimized synchronization. We analyzed the applications to show the extent to which our

analyses could further improve upon programmer efforts to eliminate synchronization operations. The thread-local analysis

was particularly important here: it was responsible for eliminating the majority of synchronization and dramatically

outperformed previously published analyses. Overall, our analyses removed a mean of 88% of dynamic synchronization

operations for singlethreaded benchmarks and 35% for multithreaded benchmarks, with a high of over 99%. The effect on

execution times for three of the benchmarks was an increase in performance of over 37%; other benchmarks we evaluated also

improved, but to a far lesser extent, because the dynamic frequency of synchronization operations in them was low. Our results

demonstrate that automatically detecting and removing synchronization overhead can eliminate the drawbacks of manual

removal, while still improving application performance.

In addition, to demonstrate that our analyses would allow a more programmer-friendly synchronization model, we

simulated the effect of this model by adding concurrency to all public methods of our benchmarks. The results show that our

algorithms are able to remove virtually all of the overhead associated with such a model. In the past, this model of concurrency

had been regarded as too expensive, since it may lead to much more synchronization than in more conventional models.

This paper makes four contributions. First, we empirically evaluate the types of unnecessary synchronization in a wide

range of single- and multi-threaded benchmarks, demonstrating the potential benefit of several types of optimization. Second,

we provide a formal presentation of precise and efficient algorithms for detecting three kinds of unnecessary synchronization.

Third, we evaluate the performance of our algorithms on the same set of applications, and analyze dynamic synchronization

behavior, the contribution of the individual analyses to overall performance, and the benefits of our analyses relative to

previous studies. Finally, we demonstrate that our analyses make a simpler model of synchronization feasible, by effectively

removing synchronization overhead from a simple motivating example program, as well as our original multi-threaded

benchmarks with synchronization added to all public methods. 

The rest of the paper is structured as follows. The next section briefly describes the Java synchronization model, and

motivates our research with measurements of synchronization overhead in both single- and multithreaded benchmarks. Section

3 compares our analyses to several recently published algorithms that also strive to eliminate synchronization in Java. Section

4 describes our thread-local, reentrant lock, and enclosed lock analyses. Section 5 presents our performance results. Finally,

section 7 concludes.
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2.  The Synchronization Problem

2.1  Cost of Synchronization in Java

Synchronization is expensive in Java programs, typically accounting for a significant fraction of execution time. Although

it is difficult to measure the cost of synchronization directly, it can be estimated in a number of ways. Microbenchmarks show

that individual synchronization operations take between 0.14 and 0.4 microseconds even for efficient synchronization

implementations running on 400MHz processors [BH99][KP98]. Our own whole-program measurements show that a 10-40%

overhead is typical for single-threaded1 applications in the JDK 1.2.0. Another study found that several programs spend

between 26% and 60% of their time doing synchronization in the Marmot research compiler [FKR98]. Because

synchronization consumes a large fraction of many Java programs’ execution time, there is a potential for significant

performance improvements by optimizing it away.

2.2  Types of Unnecessary Synchronization

A synchronization operation is unnecessary if there can be no contention between threads for its lock. In order to guide

our synchronization optimizations, we have identified three important classes of unnecessary synchronization that can be

removed by automatic compiler analyses. First, if a lock is only accessible by a single thread throughout the lifetime of the

program, i.e., it is thread-local, there can be no contention for it, and thus all operations on it can safely be eliminated.

Similarly, if threads always acquire one lock and hold it while acquiring another, i.e., the second lock is enclosed, there can be

no contention for the second lock, and the synchronization operations on it can safely be removed. Finally, when a lock is

acquired by the same thread multiple times in a nested fashion, i.e., it is a reentrant lock, the first lock acquisition protects the

others from contention, and therefore all nested synchronization operations can be optimized away.

It is possible to imagine other types of unnecessary synchronization, such as locks that protect immutable data structures,

locks that do not experience contention due to synchronization mechanisms other than enclosing locks, and acquiring and

releasing a lock multiple times in succession [DR98]. We focus on the three types discussed above, because they represent a

large proportion of all unnecessary synchronization, they can be effectively identified and optimized, and their removal does

not impact the concurrency behavior of the application. We define two analyses to optimize these types of unnecessary

synchronization: thread-local analysis to identify thread-local locks, and lock analysis to find enclosed locks and reentrant

locks.

1 Synchronization overhead in single-threaded applications can be measured by taking the difference between the execution times of a program with and with-
out synchronization operations. This experiment cannot be performed on multithreaded programs because they do not run correctly without synchronization.
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2.3  Unnecessary Synchronization Frequency by Type

In order to determine the potential benefits of optimizing each type of unnecessary synchronization, we studied the

synchronization characteristics of a diverse set of Java programs. Table 1 shows the broad scope of our benchmark suite,

which includes seven single-threaded and eight multithreaded programs of varying size. Our applications are real programs

composed of 20 to 510 classes, in domains ranging from compiler tools to network servers to database engines. We

consciously chose multithreaded programs, because they cannot be trivially optimized by removing all synchronization. The

programs in our suite include some of the largest Java programs publicly available, allowing us to demonstrate the scalability

of our techniques.

To assess the relative importance of each type of unnecessary synchronization, we used execution traces to measure the

dynamic frequency of each type for each of our 15 benchmark programs. A synchronization operation is dynamically thread-

local if the corresponding lock is only used by one thread during program execution. A synchronization operation is

dynamically enclosed if all operations on its lock occur while some other lock is locked. Finally, a synchronization operation is

dynamically reentrant if its lock is already locked when the operation occurs. A given synchronization operation can fall into

more than one category, so the total percentage of unnecessary synchronization is typically less than the sum of the

Benchmark Description
Bytecode size (000s bytes)  Classes (number) Methods (number)

Application Library Application Library Application Library

Single-threaded programs

cassowary Constraint solver (UW) 79 989 29 430 459 6748

javac Source-to-bytecode compiler for Java 
(Sun)

624 1015 173 444 2212 6914

javacup Parser-generator for Java 130 989 34 430 509 6748

javadoc Documentation generator for Java 675 1013 177 445 2360 6936

jgl Java Generic Library array benchmarks 874 989 262 430 5216 6748

jlex Lexical analyzer for Java 91 989 20 430 213 6748

pizza Source-to-bytecode compiler for Java 819 1004 239 438 3203 6851

Multithreaded programs

array Parallel matrix multiplication 46 989 29 430 178 6748

instantdb Database with a TPC-A-like workload 307 2447 67 956 1268 15891

jlogo Multithreaded Logo interpreter 202 989 58 430 760 6748

jws Web server (Sun) 564 3142 510 903 2743 19363

plasma plasma simulation 8 2016 1 1161 19 18193

proxy Network proxy for the HTTP protocol 7 989 3 430 21 6748

raytrace Ray tracer with geometric objects 29 1313 18 536 190 8688

slice visualization tool 23 2016 13 1161 71 18255

Table 1: Characteristics of our Benchmark Suite
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contributions from each category. This also implies that analyses that focus on different kinds of unnecessary synchronization

may optimize some of the same synchronization operations.

Figure 1 shows that all three types of unnecessary synchronization occur frequently in some benchmarks. These figures

represent an optimistic upper bound on how well any static analysis could eliminate a particular type of unnecessary

synchronization. The most common type is thread-local synchronization: all synchronization (except for a finalizer thread) is

thread-local for the single-threaded benchmarks, and a significant fraction of synchronization is thread-local even for the

multithreaded programs. Enclosed synchronization makes an important contribution for javadoc, proxy, and a number of the

other benchmarks. Finally, reentrant synchronization makes a small contribution to many different benchmarks.

3.  Related Work

The rapid deployment and acceptance of Java, with its multi-threaded programming model and support for lock

synchronization, has recently fueled research on eliminating unnecessary synchronization operations. While the proposed

analyses and optimization techniques have been quite diverse, they have all targeted a single source of unnecessary

synchronization, that of thread-local objects. Thread-local locks are accessed by at most one thread and once identified can be

eliminated via specialization or by explicit checks. 

Blanchet [B99] identifies thread-local objects through escape analysis by encoding reference and subtyping relationships

with integer type heights. A flow-insensitive analysis is used both to allocate thread-local objects on the stack and to eliminate
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Figure 1.  Classification of Unnecessary Synchronization Operations
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synchronization from stack-allocated objects. Stack-allocated objects are marked, and each synchronization operation checks

whether an object is on the stack before locking it. In addition, this optimization modifies method invocations to call an

unsynchronized version of a method when the receiver object does not escape.

Bogda and Hölzle [BH99] have also defined a flow-insensitive escape analysis to eliminate synchronization from thread-

local objects. The analysis is limited to thread-local objects that are only reachable by paths of one or two references from the

stack. It removes synchronization by specializing classes to create a subclass with unsynchronized methods, and modifying

allocation sites of thread-local objects to use the unsynchronized versions. The analysis may also clone several methods

leading to an allocation site, enabling it to distinguish thread-local and multithreaded objects created at the same program

point. 

Choi et al. [CGS+99] performs a variant of interprocedural points-to analysis that is designed to work well when

classifying objects as globally escaping, escaping via an argument, and not escaping. The analysis groups objects by their

allocation site and marks thread-local objects at allocation time with a bit in the object header. When synchronizing, the

compiler eliminates the atomic compare-and-swap operation for objects with this bit in the header, preserving Java semantics

by flushing the local processor cache. The analysis also allocates objects on the stack.

Whaley and Rinard [WR99] define an interprocedural, flow-sensitive points-to analysis to eliminate unnecessary

synchronization and allocate objects on the stack. The analysis computes which objects escape from each method, as well as

relationships between objects. It can analyze partial programs conservatively, improving results as more of the program

becomes available. When the analysis finds that an object is captured by a method, it specializes all methods that synchronize

on that object in order to remove the synchronization. It also generates specialized versions of all methods in the call chains

that lead to the optimizable synchronized method invocations.

Other researchers have attacked the cost of synchronization in different ways. A large body of work

[BKMS98][KP98][ADG+99][OK99] has focused on making necessary synchronization more efficient, which complements

our techniques to remove unnecessary synchronization. It is also possible to optimize unnecessary synchronization that arises

from acquiring and releasing a lock multiple times in succession [DR98][PZC95]. These optimizations affect the concurrency

of the benchmarks: coalescing multiple lock operations into one may reduce parallelism, and implementations must take care

not to introduce deadlock. Finally, some systems perform synchronization analyses to help programmers model concurrent

systems [C98] or to help find synchronization errors [DLNS98].
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Our research differs from this previous work in several important respects:

• First, all previous studies of unnecessary synchronization have concentrated solely on eliminating thread-local locks. As

shown in section 2.3, thread-local locks are only one of several sources of unneeded synchronization. In this paper, we

address three types, presenting new algorithms for eliminating two of them (thread-local and enclosed locks) and

empirically evaluating all three.

• Second, previous analyses for identifying thread-local objects have relied on escape analyses that ignore the way programs

use concurrency. Our thread-local algorithm explicitly models the interactions between different threads, and we quantify

the resulting improvement over earlier thread-oblivious algorithms; our algorithms do better than previous work on all

benchmarks we have in common.

• Finally, previous evaluations of optimization schemes have relied predominantly on single-threaded benchmarks. While

improving the performance of single-threaded programs is important, a trivial optimization to simply disable all

synchronization is most effective. Thus an important benefit of a synchronization elimination algorithm comes from

distinguishing unnecessary synchronization operations from necessary ones in multithreaded programs. In this paper, we

evaluate our analyses on both single-threaded and multithreaded applications, and quantify the difference in our analyses’

performance on the two application types. 

Concurrent work by Eric Ruf [R00] combines a thread behavior analysis similar to ours with a specialized alias analysis

based on method summaries. His specialized alias analysis is more scalable than the general-purpose analyses in our system,

resulting in much smaller analysis times. His results for thread-local synchronization are similar to ours for the small programs

we have in common, as well as the larger benchmarks plasma and javac. Ruf’s alias analysis enabled him to remove

significant amounts of synchronization from slice, while our precise alias analysis did not scale to this benchmark, resulting

in poor performance. Ruf’s work does not consider the other forms of unnecessary synchronization, enclosed and reentrant

locks.

4.  Analyses

We define a simplified analysis language and describe three analyses necessary to optimize the synchronization

opportunities discussed above: thread-local analysis, reentrant and enclosed lock analysis, and unshared field analysis. Thread-

local analysis identifies which objects are only synchronized by one thread. Lock analysis computes a description of the

monitors held at each synchronization point so that reentrant locks and enclosed locks can be eliminated. Finally, unshared
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field analysis identifies unshared fields so that lock analysis can safely identify enclosed locks. Our analyses can rely on Java’s

final annotation to detect immutable fields; an important area of future work is to detect immutable fields that are not

explicitly annotated as final.

4.1  Analysis Language

We describe our analyses in terms of a simple statement-based core language, incorporating the essential synchronization-

related aspects of Java. This allows us to focus on the details relevant to specifying the analyses while avoiding some of the

complexity of a real language. The missing features of Java can be mapped to our core language. For example, loops can be

converted into recursion, method dispatch can be implemented with if statements, variable assignment can be done with

variable renaming, exceptions can be emulated using if statements, etc. These features do not present any difficult problems

for our analysis, but would make the presentation more complex.

Figure 2 presents our analysis language. It is a simple, first-order language, incorporating object creation, field access and

assignment, synchronization expressions, threads, functions, and simple control flow. Each object creation point is labeled

with a label for a class key [GDD+97], which identifies the group of objects created at that point. In our implementation, there

is a unique key for each new statement in the program; in other implementations a key could represent a class, or could

represent another form of context sensitivity. We assume that all identifiers are given unique names. Static field references are

modeled as references to a field of the special object global, which is implicitly passed to every procedure.

Functions are modeled with a letrec construct and uniquely labelled function calls. Return values are implemented by

assigning to the special variable returnval. Threads are modeled with a labelled fork statement that starts the indicated

function in a new thread. Java’s synchronization construct is modeled by a synchronized statement, which locks the object

referred to by id and then evaluates S before releasing the lock. Each synchronized statement in the program text is also

associated with a unique label.

Figure 2.  Simplified analysis language incorporating the key synchronization features of Java

id, f, field ∈ ID 
label, base, o ∈ LABEL 
s ∈ S 
p, program ∈ P 
 
P ::= 
 P ; P 
 letrec idF := λ(id1..idn) { S } 

S ::= 
id := newlabel 
id1 := id2.f 
id1.f := id2 
S ; S 
if id1 then S1 else S2 
fork idF

label() 
synchronizedlabel(id) { S } 
id0 := idF(id1..idn)

label 
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4.2  Analysis Axioms

Our analyses are parameterized by other alias and call-graph construction analyses, a feature of our approach that allows a

trade-off between analysis time and the precision of our analysis results. We assume the following axioms are defined from

earlier analysis passes:

• aliases(id1, id2) – identifiers id1 and id2 may point to the same object

• aliases(f1, f2) – fields f1 and f2 may point to the same object

• ref(base, f, o) – objects created with the new statement labeled o may be stored in the field f of objects with label base

• creator(o) – the procedure that created the objects identified by label o

• ref(id, o) – identifier id may refer to objects labeled o

• synch_aliases(label) – the set of labels of synchronization points that may synchronize the same object as the

synchronization point identified by label

• synch_keys(label) – the set of objects that may be synchronized at synchronization point label

• immutable(f) – field f is immutable (i.e., write-once).  This may be deduced from final annotations and constructor

code.

• called(p, labelq) – function p may be called from call site label in function q. This relation includes forked functions as

well as ordinary function calls.

4.3  Thread-local Analysis

Thread-local analysis examines the behavior of threads in a program to identify objects that are not accessed by more than

one thread. In Java, there are just two ways to share an object between threads. First, an object can be written to a static field by

one thread and then read from that field by another. Second, a thread can write an object to a (non-static) field of an object that

is or will be shared by another thread, and the second thread can then read the object from that field. By looking at how these

two mechanisms are used in a particular program, the analysis discovers the set of multithreaded objects, i.e. objects that are

shared between threads. Objects not in this set are thread-local.

We present our analysis in figure 3, using inference rules. Our analysis starts with an axiom representing the execution of

the main function in the initial “main” thread:

• eval(main(), main)
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The result of inference will be the least set of judgments closed under application of these inference rules to the axioms

above. Note that a thread is represented by the forked procedure, and so the set of threads is a subset of the set of procedures.

The facts that can be inferred from our inference rules include:

• eval(s, t) – statement s may be executed inside thread t

• read(f, t) – field f may be read by thread t

• written(f, t) – field f may be written by thread t

• multi(p) – procedure p may be called more than once

• multi(t) – thread t may be started more than once

• multi(f) – field f may be read by one thread and written by another thread

Figure 3.  Inference rules describing Thread-local Analysis
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• multi(o) – object o may be accessed by more than one thread. This is the main result of our thread-local analysis.

At a high level, the thread-local algorithm takes advantage of the two simple sharing mechanisms by analyzing which

threads read and write to which fields. We call a field is that read by one thread and written by another a multithreaded field.

Our algorithm computes the set of multithreaded fields by determining the set of threads that may execute each field read and

write in the program. For each static thread instance (represented by a forked procedure), we also need to determine whether it

is started more than once, because if a thread with multiple dynamic instances both reads and writes to a field, that field will be

multithreaded. Thus we must scan the program to find out which thread forking statements may execute more than once.

Thread-local analysis runs in worst case O(o2*f + n2*t) time and O(n*t) space, where o is the number of object sets, f is

the number of fields per object, t is the number of forked procedures, and n is the size of the program. This property can be

deduced from our analysis rules using McAllester’s technique [M99]. In general, this is O(n3) time and O(n2) space, where n is

the program size. However, in practice the analysis scales linearly with the number of application classes analyzed, probably

because the number of static thread instances, the number of fields per object, and the virtual method dispatch fan-out tend to

be small in typical Java programs. Our thread-local analysis runs quickly, typically completing in far less time than the alias

analyses we run beforehand.

Our new thread-local analysis differs from our previous work [ACSE99] in that it considers thread interactions to

intelligently decide which fields allow objects to be shared between different threads. Our previous analysis, like other

previous work in the field, was overly conservative in that it assumed that all fields are multithreaded.

4.4  Lock Analysis

An enclosed lock (say, L2) is a lock that is only acquired after another (enclosing) lock L1 has already been locked. If all

threads follow this protocol, synchronization operations on L2 are redundant and can be eliminated. Enclosed locks occur often

in practice, particularly in layered systems, generic libraries or reusable object components, where each software module

usually performs synchronization independently of other modules. Established concurrent programming practice requires that

programs acquire locks in the same global order throughout the computation in order to avoid deadlock. Consequently, most

well-behaved programs exhibit a self-imposed lock hierarchy. The task of this analysis, then, is to discover this hierarchy by

simulating all potential executions of the threads, identify the redundant lock operations and optimize them out of the program.

We rely on a flow-sensitive, interprocedural analysis in order to eliminate locks that are protected from concurrent access

by other locks. Our analysis works by calculating the set of enclosing locks for each lock in the program; reentrant locks
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represent a special case where the enclosing lock is the same as the enclosed lock. This set of enclosing locks is computed by

traversing the call graph, starting from each thread’s starting point. Whenever a lock acquire or release operation is

encountered, the locked object is added to or deleted from the set of locks currently held at that program point. In order to

permit specialization based on the creation points of program objects, our algorithm is context sensitive and thus will analyze

a method once for every calling context (i.e., set of possible receiver and argument objects).

When removing synchronization due to enclosing locks, it is crucial that there be a unique enclosing lock; otherwise, the

enclosing lock does not protect the enclosed lock from concurrent access by multiple threads. Because one static lock may

represent multiple dynamic locks at runtime, we must ensure that a unique dynamic lock encloses each lock eliminated by the

analysis. We can prove this in multiple ways. First, in the reentrant case the locks are identical, as when the same variable is

locked in a nested way twice, without an assignment to that variable in between. Second, a lock may be enclosed by an object

who’s creation point is only executed once (as calculated by the thread-local analysis); thus a single static lock represents a

single dynamic lock. Third, the enclosed lock may hold the enclosing lock in one of its fields; this field must be immutable, to

ensure that the following the field link uniquely specifies the enclosing lock. Fourth, the enclosing lock may hold the enclosed

lock in one of its fields. In this case, immutability is not important, because a single enclosing lock may protect multiple

enclosed locks; however, a corresponding property is required. The enclosing lock’s field must be unshared, indicating that the

object held in the field is never held by any other object in the same field; thus the enclosing object is unique with respect to

the enclosed object. Section 4.5 presents an analysis that finds unshared fields. Finally, the last two cases can be generalized to

a path along field links from one object to another, as long as each field in the path is immutable or unshared, depending on the

direction on which the path traverses that link.

Our lock analysis represents a reentrant lock as the synchronization expression itself (SYNCH), and enclosing locks are

represented as unique objects (denoted by their creation-point label) or as paths from the synchronization expression SYNCH

through one or more field links to the destination object. We use a Link Graph (LG) to capture relationships between different

identifiers and locks in a program. The LG is a directed graph with nodes labeled with unique identifiers or placeholders, and

edges labeled with a field identifier. We notate functional operations on the graph as follows:

• Adding an edge: newgraph = add(graph, id1 →f id2)

• Replacing nodes: newgraph = graph[id1 → id2]

• Treeshake: newgraph = treeshake(graph, rootset)



Technical Report UW-CSE-00-10-01 14

• Union: newgraph = graph1 ∪ graph2

• Intersection: newgraph = graph1 ∩ graph2

The treeshake operation removes all nodes and edges that are not along any directed path connecting a pair of nodes in the

root node set. The union operation merges two graphs by merging corresponding nodes, and copying non-corresponding edges

and placeholder nodes from both graphs. The intersection operation is the same as union, except that only edges and

placeholder nodes that are common to the two graphs are maintained. In these operations, two nodes correspond if they have

the same label or are pointed two by identical links from corresponding nodes.

Intuitively, an edge in the link graph means that at some program point there was an immutable field connecting the edge

source to the edge destination, or there was an unshared field connecting the edge destination to the edge source. Note that

edges representing immutable fields go in the opposite direction as edges representing unshared fields; this captures the notion

that the two are really inverses for the purposes of our enclosing lock analysis. The link graph does not strictly represent an

alias graph, as we do not kill any edges on updates. This is acceptable because the link graph only contains edges where

updates don’t matter (unshared fields) or can’t occur (immutable fields).

Figure 4 presents our lock analysis as a semantic analysis over the program text. The analysis function L accepts as

curried parameters a bit of program text, the set of locks held at the current program point, and a link graph. The analysis

function manipulates the inputs according to the form of the program text and returns an updated link graph. The function also

updates a global data structure that tracks the set of enclosing locks at each synchronization point. Analysis is triggered

through the get_locks function, which runs the analysis on main assuming an empty lock set and link graph (as well as

optimistic assumptions about enclosing locks at each synchronization point). Get_locks then looks up the set of locks at the

relevant synchronization point in the data structure produced as an analysis side effect. During the analysis, a set of locks is

represented by a LOCKSET structure, which is a set of nodes in a link graph. In the data structure lockmap, which maps

synchronization points to the set of locks held at each point, locks are represented as a PATH in a link graph, where the source

node has been either replaced with the node SYNCH (representing the current synchronization expression) or with the label of

a unique object.

The rule for new does not affect any data structures. Field reads and writes are equivalent for our analysis: if the field is

unshared or immutable, then a link is established between the identifiers in the appropriate direction. Analyzing a sequence of

statements simply analyzes the first and uses the resulting link graph to analyze the second. After an if statement, it is only safe
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Figure 4.  Semantic analysis functions for Lock Analysis

L : [[syntax]] → LOCKSET → LG → LG 
 

 // all global tables are initializes to optimistic values (- ) 
global context_table : CONTOUR → fin LOCKSETin × LGin × LGout 

global lockmap : LABEL × CONTOUR → fin 2
PATH 

global enclosingmap : LABEL → fin 2
PATH 

 

get_locks(label) : LOCKSET = 
let ignore = L[[ main()]] Ø Ø in lockmap(label) 
 

L[[id := newlabel]] lockset lg = lg 
L[[id2 := id1.f]] lockset lg = 

let lg' = if is_immutable(f) then add(lg, id1 →f id2) else lg in 
if is_unshared(f) then add(lg', id2 →f id1) else lg' 

L[[id1.f := id2]] lockset lg = 
let lg' = if is_immutable(f) then add(lg, id1 →f id2) else lg in 
if is_unshared(f) then add(lg', id2 →f id1) else lg' 

L[[S1 ; S2]] lockset lg = 
let lg' = L[[S1]] lockset lg in  

L[[ S2]] lockset lg' 
L[[if id1 then S1 else S2]] lockset lockmap lg = 

let lg' = L[[S1]] lockset lg in let lg'' = L[[S2]] lockset lg in lg' ∩ lg'' 
L[[fork idF()]] lockset lg = 

let [[letrec idF := λ() { S }]] = lookup(idF) in 
let ignore = L[[ S]] Ø Ø in  
lg 

L[[synchronizedlabel(id) { S }]] lockset lg = 
let unique_sources = { id } ∪ { s | s ∈ lockset ∧ not multi(creator(s)) } in 
let locks = { path[id → SYNCH] | path ∈ lg ∧ source(path) ∈unique_sources ∧ destination(path) ∈ lockset } in 
lockmap := lockmap[(label, current_contour())→ locks ∩ lockmap[(label, current_contour())]]; 
enclosingmap := enclosingmap[ o → locks ∩ enclosingmap[o] | ref(id, o) ] 
let object_refs = { o | ref(id, o) } in 
let unique_locks = if object_refs = {o} ∧ multi(creator(o)) then {o} else Ø in 

L[[S]]  (lockset ∪ { id } ∪ unique_locks) lg 
L[[id0 := idF(id1..idn)

label]] lockset lg = 
let [[letrec idF := λ(formal1..formaln) { S }]] = lookup(idF) in 
let lg' = treeshake(lg, { id1..idn  } ∪ lockset ) in 
let mapping = { oldnode → new_placeholder() | oldnode ∈ nodes(lg) } in 
let mapping' = mapping[idi → formali | i ∈ 1..n] in 

let lg'' = context_strategy(idF, lockset[node → mapping'[node]], lg'[node → mapping'[node]]) in 
lg ∪ lg'' [node → original | (original → node) ∈ mapping' ] [returnval → id0] 

context_strategy(idF, lockset, lg) = 
let [[letrec idF := λ(formal1..formaln) { S }]] = lookup(idF) in 
let contour = get_contour(meta information) in 
let (prev_lockset, prev_lg, prev_result) = context_table[contour] in 

if (prev_lockset ⊆ lockset ∧ prev_lg ⊆ lg) ∨ is_recursive_call() then prev_lg 
else let lockset' = lockset ∩ prev_lockset in 

let lg' = lg ∩ prev_lg in  
let lg'' = L[[ S]] lockset' lg' in  
let lg''' = treeshake(lg'', { formal1..formaln  } ∪ { returnval } ∪ lockset) in  

context_table := context_table[contour →  (lockset', lg', lg''') ]; 
lg''' 
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to assume relationships established along both paths, so the resulting link graph is the intersection of the link graphs from the

then and else clauses. A fork statement begins analysis in the new thread with an empty lock set and link graph.

At synchronization statements, the analysis records all enclosing locks at that statement, and adds the locked object to the

set of locks. For an enclosing lock to be uniquely specified with respect to the locked expression, it must begin with a unique

expression, which may be a singleton object (created only once during program execution) or may be the locked object itself.

From this unique object, we can find a path through the link graph, where each link uniquely specifies its destination with

respect for the source due to the properties of the graph. If the final object in the path is in the lock set, the path describes a

unique enclosing lock, and therefore it is added to the lockmap for that synchronization expression. The locks determined by

this analysis are intersected with all other analyses of the same contour, and the result is saved for this synchronization point

and contour. We also save the enclosing lock set for each object the identifier may refer to, intersecting it with the previous set

of enclosing locks for that object. Then the identifier itself is added to the lock set for evaluation of the synchronization block,

and if this identifier points to a single, unique object, the representation for that object is added to the lock set as well.

At function calls, the analysis finds the formals of the called function and maps identifiers to formals. Only the part of the

link graph that links formal identifiers and locked objects is relevant to the callee, so all other parts of the graph are removed.

Nodes representing identifiers that are no longer in scope in the new function are replaced with placeholder nodes at the same

location in the graph; such nodes may represent locked objects, or may be along a unique path to locked objects. The callee is

analyzed using one of several possible context strategies, and a reverse mapping applies the resulting link graph to the caller.

In our implementation, the context strategy analyzes each function multiple times according to the calling context, which

may be represented by the classes of the arguments, the calling function, or other meta-information. In our implementation, we

used the sets of argument classes from the SCS call-graph construction algorithm as our contours. A contour table caches

(input, output) analysis pairs for each contour, to avoid excessive contour re-analysis and handle recursion appropriately. If the

input information from the contour table is a conservative approximation of the current input information, the old output

information is returned. For recursive calls to the same contour, an optimistic initial result is returned, and the framework will

automatically re-analyze the callee when that optimistic result is later modified, preserving analysis soundness. Finally, the

text of the new procedure is analyzed, the result is combined with previous results, cached in the context table, and returned to

the analysis of the callee.
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4.5  Unshared Field Analysis

Unshared field analysis detects fields that uniquely enclose the object they point to. They provide a natural counterpart to

immutable fields (including final fields) which uniquely point to a particular object (which can then be used as an enclosing

lock). Figure 5 shows our flow- and context-sensitive analysis to detect unshared fields. The basic principle of the analysis is

to conservatively track the set of fields that each identifier could possibly alias with. Thus the analysis passes around and

updates a mapping from the identifiers in scope to the set of possibly aliased fields. New objects do not alias any fields, but an

Figure 5.  Semantic analysis functions for Unshared Field Analysis

fset ∈ FSET = 2ID 

idstate ∈ IDSTATE = ID →fin FSET 
 

U : [[syntax]] → IDSTATE → IDSTATE 
 

 // all global tables are initializes to optimistic values (- ) 
global shared : FSET; 
global context_table : CONTOUR → fin IDSTATEin×IDSTATEout; 
 

is_unshared(field)= let ignore = U [[ main()]] Ø in (field ∉ shared) 
 

U[[id := newlabel]] idstate = idstate[id → Ø] 
U[[id1 := id2.f]] idstate = idstate[id1 → { f’ | aliases(f, f’) }] 
U[[id1.f := id2]] idstate = let fset = { f } ∪ idstate[id2] in 

if f ∈ idstate[id2] then shared := shared ∪ { f }; 
idstate[id → {f} ∪ idstate[id] | aliases(id, id2)] 

U[[S1 ; S2]] idstate = let idstate’ = U[[S1]] idstate in U[[ S2]] idstate’ 
U[[if id1 then S1 else S2]] idstate = 

let idstate’ = U[[S1]] idstate in let idstate’’ = U[[S2]] idstate in idstate’ ∪ idstate’’ 
U[[fork idF()]] idstate =  

let [[letrec idF := λ() { S }]] = lookup(idF) in 
let ignore = L[[ S]] Ø; 
idstate 

U[[synchronizedlabel(id) { S }]] idstate = U[[S]] idstate 
U[[id0 := idF(id1..idn)label]] idstate = 

let [[letrec idF := λ(formal1..formaln) { S }]] = lookup(idF) in 
let idstate' =  {formali → idstate[idi] | i ∈ 1..n} in 
let idstate'' = context_strategy(idF, idstate') in 
let newidstate = idstate[id0 → idstate''[returnval]] in 

newidstate[id → idstate''[formali] ∪ idstate[id] | i ∈ 1..n ∧ aliases(id, idi)] 

context_strategy(idF, idstate) = 
let [[letrec idF := λ(formal1..formaln) { S }]] = lookup(idF) in 
let contour = get_contour(meta information) in 
let (prev_idstate, prev_result) = context_table[contour] in 

if prev_idstate ⊇ idstate ∨ is_recursive_call() then prev_result 
else let idstate' = idstate ∪ prev_idstate in 

let idstate'' = U[[ S]] idstate' in  
context_table := context_table[contour → (idstate', idstate'')]; 
idstate'' 
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assignment of a field dereference to an identifier means that identifier may be aliased to the dereferenced field, or any field the

dereferenced field may alias. When a field is assigned an identifier’s value, we check whether the identifier could already

include that field; if so, we have identified a case where an object may be shared between two instances of the same field. That

field becomes shared and is added to the shared field set. Meanwhile, the identifier (and any other identifier that may point to

the same object) may be aliased to the assigned field.

Note that if an object is assigned to two different fields, neither field becomes shared; fields only become shared when the

same object is possibly assigned to two instances of the same field. This does not lead to incorrect results in lock analysis,

because field links are annotated with the field name, allowing the two different enclosing objects to be distinguished.

A sequence of statements is evaluated in turn, and control flow merges use union to conservatively combine the identifier

state along each path. Synchronization statements do not affect identifier state. At function calls, a fairly straightforward actual

to formal mapping is applied in a similar style to lock analysis. The resulting callee’s identifier state must be combined with

the caller’s identifier state taking identifier aliases into consideration, because the arguments and results may be assigned to

fields within the callee. Finally, our context strategy for this analysis is similar to that for lock analysis, except that the calling

context is simply the input identifier state.

4.6  Optimizations

We apply three optimizations for the three cases of unnecessary synchronization. We test each synchronization statement

for thread-local synchronization. If there is no conclusion multi(o) from thread-local analysis for any o possibly synchronized

by a synchronization statement s, then s can be removed from the program. Otherwise, if there is any o synchronized at s for

which there is no conclusion multi(o), and the synchronized object is the receiver of the method (the common case, including

all synchronized methods), then a new version of the method is cloned for instances of o without synchronization. This

specialization technique may require cloning o’s class, and changing the new statements that create instances of o to refer to

the new class. Our implementation choice of sets of receiver classes as contours allows us to naturally use our analysis

information when specializing methods.

We also test each synchronization statement for reentrant synchronization. For an synchronization expression s, if the lock

set includes SYNCH, then s can be removed from the program. If SYNCH is in the lock set for some receivers but not for

others, specialization can be applied using the technique above.
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Finally, we can remove a synchronization statement s if, for each object o synchronized at s, the set of enclosing locks

given by enclosingmap[o] is not empty. If only some of the objects synchronized at s are enclosed, and synchronization is on

the receiver object, the method can be specialized in a straightforward way to eliminate synchronization.

4.7  Implementation

Our analyses are implemented in the Vortex research compiler [DDG+96], which performs whole program analysis. Our

analyses assume that a call-graph construction and alias analysis pass has been run. In our implementation, we use the Simple

Class Sets (SCS) context-sensitive call graph construction algorithm [GDDC97] for the smaller benchmarks, and the context-

insensitive 0-CFA algorithm [S88] for the benchmarks larger than javac. We augmented the algorithms to collect alias

information based on the creation points of objects. While these algorithms build a precise call graph, they compute very

general alias information and as a result the SCS algorithm did not scale to our largest benchmarks. An alias analysis

specialized for synchronization elimination [R00] would allow large improvements in scalability and analysis performance, at

the potential cost of not being reusable for other compiler analysis tasks. The analyses above are fully implemented in our

system, except that we use an approximation of the link graph and do not consider immutable fields; these pieces do not make

a significant contribution to unnecessary synchronization in our benchmarks.

In order to show the effectiveness of our analyses on a typical runtime platform, we sent our analysis results to a binary

rewriter [SGGB99] that performs optimizations on Java class files. These optimized application classes can then be run on any

Java virtual machine.

A production compiler that targets multiprocessors would still have to flush the local processor cache at eliminated

synchronization points in order to conform to Java’s memory model [P99]. Due to our binary rewriting strategy, we could not

implement this technique in our system.

5.  Results

In this section, we evaluate the performance of our analyses. Section 5.2 shows that they can improve the performance of

a workload in which programmers had eliminated synchronization manually; section 5.1 demonstrates their potential for

enabling a simpler and more general synchronization model; and section 5.3 describes their compile-time cost.

5.1  Dynamic Evaluation of the Synchronization Analyses

In this section we evaluate the impact of our analyses on the dynamic behavior of the benchmarks. Table 3 shows the

dynamic percentage of synchronization operations eliminated at runtime by our analyses. The first column represents the
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percentage of runtime synchronization operations removed by all of our analyses combined. The next three pairs of columns

break this down into thread-local, reentrant, and enclosed locks. The first column in each pair shows the percentage of locks in

each category that is optimized by its appropriate analysis, while the second column in the pair is the total amount of dynamic

synchronization in the category, as measured by the dynamic traces (it thus serves as an upper bound on the analysis results).

(Recall that, since many synchronization operations fall into several categories, the totals of each pair do not sum to 100%; in

particular, many enclosed and reentrant locks are also thread-local.) Finally, the last two columns show the total number of

lock operations and the frequency in operations per second.

In general, thread-local analysis did well for most of the benchmarks, eliminating a majority (64-99+%) of

synchronization operations in our singlethreaded benchmarks and a more widely varying percentage (0-89%) of

synchronization in our multithreaded applications. Among the single-threaded programs, it optimized jlex, cassowary, and

jgl particularly well, eliminating over 99.9% of synchronization in these programs. We also eliminated most thread-local

synchronization in the other singlethreaded programs, but did not realize the full potential of our analyses. In the multithreaded

programs, where the challenge is greater, the thread-local analysis usually did well, getting most of its potential for array,

proxy, plasma and raytrace. Our dynamic traces show very little thread-local synchronization in jws, so it is unsurprising

that we didn’t eliminate any unnecessary synchronization here. instantdb and slice are large benchmark programs that

Benchmark
All Thread-Local Reentrant Enclosed

Total Ops Ops/sec
Actual Actual Potential Actual Potential Actual Potential

cassowary 99.98% 99.98% 99.99% 0.00% 0.01% 0.00% 0.06% 4440928 25715

javac 94.55% 94.55% 99.79% 0.02% 8.14% 0.00% 20.54% 1378442 49373

javacup 78.12% 78.12% 99.08% 2.60% 17.57% 0.00% 9.02% 19174 4117

javadoc 82.76% 82.76% 99.66% 0.05% 5.60% 0.00% 52.42% 909490 22689

jgl 99.99% 99.99% 100.00% 0.00% 0.00% 0.00% 0.00% 5529820 162766

jlex 99.95% 99.95% 99.99% 4.37% 11.14% 0.00% 0.07% 1839166 276442

pizza 64.26% 64.26% 88.36% 0.61% 18.10% 0.00% 22.29% 20125 6492

array 44.44% 44.44% 50.12% 0.02% 0.12% 0.00% 0.13% 90693 372

instantdb 0.01% 0.00% 54.31% 0.01% 3.43% 0.00% 16.78% 302640 27143

jlogo 12.03% 0.21% 14.85% 0.08% 0.37% 11.81% 25.26% 164501 1871

jws 0.01% 0.00% 0.83% 0.01% 21.42% 0.00% 12.48% 1062766 N/A

plasma 89.30% 89.25% 98.87% 0.05% 1.36% 0.00% 15.91% 34723 62

proxy 43.29% 39.45% 41.43% 3.84% 18.34% 0.00% 46.77% 364624 N/A

raytrace 72.78% 72.69% 96.00% 0.19% 2.04% 0.00% 1.22% 34351 N/A

slice 0.08% 0.00% 91.22% 0.08% 4.23% 0.00% 17.86% 39533 255.006

Table 2: Dynamic Number of Synchronization Operations Eliminated



Technical Report UW-CSE-00-10-01 21

used much of the AWT graphics library, and our context-sensitive alias analysis did not scale to these programs; using a

context-insensitive alias analysis failed to catch thread-local synchronization operations.

Both reentrant lock analysis and enclosed lock analysis had a small impact on most benchmarks, but made significant

contributions to a select few. For example, reentrant lock analysis in general tended to eliminate operations that were also

removed by thread-local analysis; however, the proxy benchmark benefited from optimizing reentrant locks that were not

thread-local, and thus were not optimizable with that technique. Similarly, enclosed lock analysis made an impact on jlogo by

eliminating 12% of the dynamic synchronization operations through specializing a particular call site; these synchronization

operations were not thread-local and could not have been optimized by other algorithms. There are two reasons why the

enclosed and reentrant lock analyses did not make an impact on benchmarks across the board. First, the benchmarks exhibit by

far more thread-local operations than enclosed and reentrant locks combined, and most cases of simple reentrant and enclosed

locks had been already optimized out manually by programmers. For example, rather than use the synchronized Vector class

to store hash table elements in their buckets, the implementors of java.util.Hashtable designed a custom,

unsynchronized linked list class. While our analyses would have removed this source of overhead, programmers who did not

have these analyses available to them did the optimizations themselves, at the cost of more complex code. All of the benefit of

enclosed lock analysis in our benchmarks came from unique enclosing locks, suggesting that following unshared and

immutable fields is not a useful technique for optimizing common Java programs. The second reason why the enclosed and

reentrant lock analyses were not effective on all benchmarks involves inaccuracies in alias analysis. For example, all of our

programs have synchronization on OutputStreamWriters that are enclosed by PrintStreams. Although our analyses

identified these operations as being enclosed, our implementation was unable to optimize them; we need to optimize some

OutputStreamWriters and not others, but we cannot use dispatch to tell the difference, because the synchronization

statement is in the BufferedWriter class, not the OutputStreamWriter class. A more precise alias analysis could address

this problem at the expense of compilation time.

The extent to which the reductions in dynamic synchronization operations translated into execution time speedups

depended on the frequency of synchronization operations in the programs. For example, Table 2 shows that jlex and jgl do

far more synchronization operations per second than the other benchmarks, and that translated into a dramatic speedup for

these benchmarks. Figure 6 shows the execution speed of our optimized benchmark programs relative to the unoptimized

versions. In the graph, the bars represent the execution speed improvement due to all analyses combined, relative to the
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unoptimized versions. Because our analyses are particularly relevant for multithreaded benchmarks running on

multiprocessors, these numbers were collected on a Solaris machine with four 90 MHz hyperSPARC processors and 250 MB

of RAM. Since this machine is a few years old, and multiprocessor synchronization costs in cycles typically increase as clock

speed rises, our speedup numbers are probably conservative. Our runtime platform was the JDK 1.2.103, a high-performance

commercial JIT compiler with an efficient implementation of synchronization [OK99][ADG+99]. All measurements represent

an average of five executions, preceded by three runs to warm up the caches. We were unable to collect meaningful execution

times for the benchmarks jws, proxy, and raytrace.

The synchronization analyses were very effective for cassowary, jgl, and jlex, speeding up their execution by 37-

53%. The speedups are due to the high frequency of synchronization operations, the high cost of synchronization operations in

these benchmarks (particularly cassowary) relative to other benchmarks, combined with the effectiveness of our analyses on

these programs. In other benchmarks in which our analyses eliminated a substantial proportion of the synchronization

operations, such as javacup and pizza, the impact on total execution time was small, because synchronization accounted for

a small portion of running time.

5.2  A Simpler Synchronization Model

In order to determine whether our analyses can support a simpler synchronization model, where by default all public

methods of each class are synchronized, we performed two experiments. In the first, we wrote a simple program that illustrates
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Figure 6.  Speedups due to the Elimination of Unnecessary Synchronization
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some characteristics of a web server or database server. Appendix A lists the web server code, including a simple driver

application. The application has several threads that read a table data structure, and one thread that writes to it. The table is

implemented as a closed hash table, where all entries with the same hash code are stored in the linked list for the corresponding

hash bucket. Although most current implementations of hash tables (e.g., java.util.Hashtable) implement their own

linked-list data structure for efficiency, we believe it is a better design to reuse an existing list class if efficiency considerations

permit. As a reusable class, our list implementation included synchronization on all public methods. However, our analyses

were able to eliminate all synchronization on the list, because it was enclosed by the (globally unique) hash table data

structure. The resulting application sped up by 35% vs. the original unoptimized version, matching the performance of a hand-

optimized version of the same benchmark. This example demonstrates that our analyses (and in particular, enclosed lock

analysis) have the potential to make a cleaner programming style more practical.

In a second experiment, we modified the Java class libraries and a subset of our applications to add synchronization to all

public methods. Table 3 shows the static number of synchronization points optimized by our analyses in this experiment. For

most programs, thread-local analysis (shown in the fourth column) was able to eliminate virtually all of the synchronization in

these programs, effectively eliminating the extraneous overhead that would be imposed by the more natural synchronization

model. Because this synchronization model leads to significant reentrant synchronization, our reentrant lock analysis was able

to eliminate 10-30% of the static synchronization points in these programs (second column). The role of reentrant lock

benchmark Reentrant
Non-Thread-Local 

Reentrant
Thread-Local Total Statements

cassowary 178 1 807 827

javac 136 1 1695 1721

javacup 199 1 835 854

javadoc 208 1 1305 1331

jgl 167 1 683 702

pizza 118 1 1154 1174

array 160 51 484 693

jlogo 154 1 660 681

plasma 318 318 0 1842

proxy 161 47 510 736

raytrace 301 165 685 1331

slice 324 324 0 1863

Table 3: Synchronization Statements Optimized in the Simple Synchronization Model
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analysis was particularly important for multithreaded programs, as shown in the third column of Table 2, which lists the

reentrant synchronization points that are not also thread-local. In the multithreaded benchmarks, reentrant lock analysis

typically eliminates 10% of the static synchronization points in the program, in addition to what thread-local analysis is able to

find. Enclosed lock analysis was unable to optimize these programs. It is likely that remaining imprecisions in the alias

analysis, together with the increased use of synchronization and the inherent difficulty of identifying and optimizing enclosed

locks were the causes.

Since we have not yet provided a facility to override the default of adding synchronization to every method, and our Java

programs were not designed with this synchronization paradigm in mind, most programs deadlock when run with

synchronization added to all public methods. However, we were able to evaluate the effect of our analyses on javadoc. The

version of javadoc with all public methods synchronized executes in 52.2 seconds; in optimizing this version we were able to

reduce the runtime to 37.6 seconds, which is faster than the original, manually optimized program. These results imply that our

analyses are able to successfully mitigate the performance impact of a cleaner synchronization model.

5.3  Analysis Time

The time to perform our analyses was substantial, given that they are whole-program analyses and that our

implementation is not optimized. Nevertheless, our thread-local analysis times ranged from 2 minutes for cassowary to 17

minutes in the case of plasma, running on an Sun ULTRASPARC with about 500 MB of RAM. Reentrant and enclosed lock

analysis took between 2 and 27 hours, similar to the amount of time taken by alias analysis. Profile information suggests that

the analysis time for reentrant and enclosed locks is not due to computation of lock information, but due to the overhead of the

analysis infrastructure and an intraprocedural flow-sensitive alias analysis that must be run in conjunction with lock analysis.

In a production system, an SSA representation combined with a specialized interprocedural analysis infrastructure would

likely improve the performance of the lock analyses by an order of magnitude or more. Furthermore, our reentrant lock

analysis can be run without the enclosed lock analysis portion, leading to significantly increased performance. Ruf’s work has

shown that thread-local analysis can be run with a very efficient and scalable specialized alias analysis [R00]. It is likely that

reentrant and enclosed lock analyses could be designed to work with a similar specialized alias analysis; this is an important

area of future work.
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6.  Future Work

Several interesting areas of future work remain. Since long analysis times is a significant drawback of our work, it would

be interesting to combine our field-traversing thread-local analysis with Ruf’s alias analysis [R00]. Such a combination should

be as efficient as Ruf’s analysis, while distinguishing between field reads and writes in order to get precision better than either

work could alone. Summary and unification-based alias techniques could also be applied to our unshared field analysis and

enclosing lock analysis, potentially allowing better and more efficient results. An analysis similar to unshared field analysis

could be applied to unboxing objects to represent them inline, inside a container object. There may also be other forms of

unnecessary synchronization that could be optimized.

Perhaps the most important area of future work is designing and evaluating more effective language mechanisms for

synchronization. As described earlier, Java’s default of not synchronizing without an explicit annotation makes easy to omit a

single declaration, possibly leading to dangerous data races. While alternative mechanisms, such as synchronizing at every

method call, have been proposed, it is not clear whether such mechanisms are useful in practice. Our work suggests that

compiler technology can eliminate the runtime costs of such models, but more evaluation of their effects on software

engineering is necessary.

7.  Conclusion

The synchronization analyses described in this paper, namely thread-local, lock, and unshared field analysis, resulted in a

large decrease in dynamic synchronization operations for most programs, enabling programmers to use clean synchronization

models without incurring significant extra cost. The thread-local algorithm was the most effective of the three: its dramatically

increased performance over previously published thread-local analyses demonstrates the importance of considering thread

interactions when eliminating unnecessary synchronization from Java programs. Three of our benchmarks experienced

speedups of 37-53%; other benchmarks we evaluated also improved, but to a far lesser extent, because the frequency of

synchronization operations in them was low. The results show that our analyses for automatically eliminating unnecessary

synchronization enable programmers to more easily write reusable, maintainable, and correct multithreaded programs without

worrying about excessive synchronization cost.
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Appendix A: Webserver Code
import java.util.Random;

class Pair {
  private Object first;
  private Object second;

  public Pair(Object f, Object s) {
    first = f; second = s; }

  public synchronized Object getFirst() {
return first; }

  public synchronized Object getSecond() { 
return second; }

  public synchronized void setFirst(Object f) 
{ first = f; }

  public synchronized void setSecond(
Object s) { second = s; }

}

class Table {
  private List entries[];
  private int capacity;

  public Table() {
    capacity = 13587;
    entries = new List[capacity];
    for (int i = 0; i < capacity; ++i)
      entries[i] = new List();
  }

  public synchronized Object get(Object key) {
    return getEntry(key).getSecond();
  }

  public synchronized void put(Object key, 
Object value) {

    Pair entry = getEntry(key);
    entry.setSecond(value);
  }

private synchronized Pair getEntry(Object 
key) {

int index = key.hashCode() % capacity;
List l = entries[index];

    l.reset();
    while (l.hasMore()) {
      Pair p = (Pair) l.getNext();
      if (p.getFirst().equals(key))
        return p;
    }

Pair p = new Pair(key, null);
    l.add(p);
    return p;
  }
}

class List {
  private Pair first;
  private Pair current;

  public synchronized void reset() {
    current = first; }
  public synchronized boolean hasMore() {
    return current != null; }
  public synchronized Object getNext() {
    if (current != null) {
      Object value = current.getFirst();
      current = (Pair) current.getSecond();
      return value;
    }

    else
      return null;
  }

  public synchronized void add(Object o) {
    first = new Pair(o, first); }
}

class WriterThread extends Thread {
  public void run() {
    int myMaxNumber = 100;
    while (myMaxNumber < 10000) {
      for (int i = 0; i < 100; ++i) {
        Webserver.dataTable.put(

new Integer(myMaxNumber), 
String.valueOf(myMaxNumber));

        myMaxNumber++;
      }
      synchronized(Webserver.maxNumberLock) {
        Webserver.maxNumber = myMaxNumber;
      }
    }
    System.out.println("Writer complete");
  }
}

class ReaderThread extends Thread {
  public void run() {
    int myMaxNumber;
    Random rand = new Random();
    for (int i = 0; i < 1000; ++i) {
      synchronized(Webserver.maxNumberLock) {
        myMaxNumber = Webserver.maxNumber;
      }
      for (int j = 0; j < 100; ++j) {
        int index = Math.abs(

rand.nextInt()) % myMaxNumber;
        Webserver.dataTable.get(

new Integer(index));
      }
    }
    System.out.println("Reader complete");
  }
}

public class Webserver {
  public static void main(String args[]) {
    /* set up data table */
    maxNumber = 100;
    dataTable = new Table();
    maxNumberLock = new Object();
    for (maxNumber = 0; maxNumber < 100; 

++maxNumber) {
      dataTable.put(new Integer(maxNumber), 

String.valueOf(maxNumber));
    }
    for (int threadNum = 0; threadNum < 8; 

++threadNum) {
      new ReaderThread().start();
    }
    new WriterThread().start();
  }
  public static Table dataTable;
  public static int maxNumber;
  public static Object maxNumberLock;
}
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